Quiz 5 ChE Thermodynamics February 13, 2020 TAKE HOME Due Friday at midnight

A three stage Rankine cycle has been proposed as a means to improve efficiency (cycle A below) as an alternative to a single stage Rankine cycle (cycle B below). You need to do a back of the envelope calculation to determine if this is reasonable given roughly twice the cost for the three-stage versus a single stage system.

- Use the answer to homework problem, 4.18, $P_2 = \sqrt{(P_1 P_3)}$, to solve for pressures P_2 and P_3 .
- -The efficiency of the turbines are all $\eta_{\text{eff}} = 0.80$ and the efficiency of the pump is $\eta_{\text{eff}} = 0.85$. -Calculate the efficiencies for the two cycles as well as for the Carnot cycle.
- -Give a percentage of the ideal for A and B by dividing your efficiency by the Carnot efficiency for both cycles.
- -Comment on the final temperature leaving the last turbine in both cases.
- -Use the steam tables at the back of the book for the values and do interpolation. <u>Round the</u> <u>pressures to a tabulated value.</u>
- -Plot on the *P*-*H* and on the *T*-*S* graphs the 6 and 4 points of cycles A and B. (Check to make sure all of the table values, *H*, *S*, *T*, *P* match for each point for each graph).
- -Fill in all of the values in the two tables.
- -Turn in Pages 2, 3, 4, and all of your work, use the phone app **Scannable** (part of Evernote) to make a pdf of your answers and email to the homework email address. Work alone!!!

	Cycle A						
Stream	P, Mpa	T, °C	H, kJ/kg	S, kJ/(kg K)	W/Q, kJ/kg	State	q
1	5	500			-		
2"							
2							
3'							
3							
4'							
4	0.1						
5						SL	
6'							
6							

Cycle B							
Stream	P, Mpa	T, °C	H, kJ/kg	S, kJ/(kg K)	W	State	q
1	5	500			-		
4'							
4	0.1						
5						SL	
6'							
6							

	Efficiency	ηeff/ηCarnot
Cycle A		
Cycle B		
Carnot Cycle		1

Summary of Process and General Rules

- Nozzle $\Delta S = 0$ $\Delta H = 1/2 mv^2$
- Throttle $\Delta S = -R \ln(P_2/P_1)$ (i.g.) $\Delta H = 1/2 mv^2$
- Pump $\Delta S = 0$ for adiabatic reversible $\Delta H = W_{\rm S} = \Delta H' / \eta_{\rm eff}$ $W_{\rm S,Pump} = V \Delta P$
- Turbine $\Delta S = 0$ for adiabatic reversible $\Delta H = W_{\rm S} = \Delta H' \eta_{\rm eff}$
- Carnot (Use °K) Engine $\eta_{\text{eff}} = (T_{\text{H}} - T_{\text{C}})/T_{\text{H}}$ Refrigerator $COP = T_{\text{C}}/(T_{\text{H}} - T_{\text{C}})$ Heat Pump $COP = T_{\text{H}}/(T_{\text{H}} - T_{\text{C}})$

- Isothermal $(\Delta S)_T = R \ln[V_2/V_1]$ i.g. = -R $\ln[P_2/P_1]$ $(\Delta H)_T = 0$ Ideal Mixing $\Delta S_{mix} = -R \Sigma x_i \ln x_i$
- Adiabatic, Reversible $\Delta S = 0$
- Isobaric $(dS)_P = C_p (dT)_P/T$ $(dS/dT)_P = C_p/T$
- Constant Volume

$$(dS)_V = C_V (dT)_V / T$$
$$(dS/dT)_V = C_V / T$$

Phase Change $\Delta S_{\text{trans}} = \Delta H_{\text{trans}} / T_{\text{trans}}$

Stream	P, Mpa	T, °C	H, kJ/kg	S, kJ/(kg K)	W/Q, kJ/kg	State	q
1	5	500	3 4 30	6,98		V	1
2*	1.36	306	3050	6.98	-380	V	1
2	1:36	341	3/30	7.11	-300	V	1
3'	0.368	198	2830	7. []	-300	V	
3	0.368	215	2890	7,23	-240	V	1
4	0.1	99.6	2630	7,23	-260	V/L	0.979
4	0.1	99.6	2680	7.36	-208	SV	1
5	0.1	99.6	4(Bht	1,30	-2260	SL	0
6	5	100	423	1,30)	5.10	L	0
6	5	190	424	1.31	6.00	L	0

Cycle A

Cycle B

Stream	P, Mpa	T, °C	H, kJ/kg	S, kJ/(kg K)	W	State	q
1	5	500	3430	6.98		V	1
4'	0 . (99.6	2540	6.98	-890	VIL	0.937
4	0.1	120	2720	7.46	712	V	1
5	0,1	99.6	418	1,30	-7300	SL	0
6'	5	100	423	1,30	5	L	0
6	5	100	424	1.3Ø	5.89	L	0

	Efficiency	ηeff/ηCarnot
Cycle A	0.247	0,477
Cycle B	0.235	0,454
Carnot Cycle	0.518	1

$$\begin{array}{l} (0) \quad (a' c_{u} (ale P_{2} \neq P_{3} \neq c_{u} f_{u}) \\ P_{1} = \sqrt{P_{1}P_{3}} \quad P_{3} = \sqrt{P_{2}P_{4}} \\ P_{2} = \sqrt{P_{1}P_{3}} \quad P_{3} = \sqrt{P_{2}P_{4}} \\ P_{2} = \sqrt{P_{1}P_{4}} \quad P_{2} = \sqrt{P_{1}^{2}P_{4}} = \sqrt{E_{my}} \int_{0}^{2} \frac{1}{MP_{a}} \\ P_{3} = \sqrt{P_{2}P_{4}} = \frac{1.36 \text{ M/a}}{\sqrt{(1.36MA})(0.1MP_{a})} = 0.369 \text{ M/a}^{-0.4MP_{a}} \\ (2) \quad SF_{0} + 2' \quad P_{2} = 4.4 \text{ M/A} \quad S_{2} = 6.98 \text{ M}_{4}^{T} \\ \frac{T C}{310} \quad \frac{14^{4}P_{4}}{310} \quad S_{1}^{-0.3} + \frac{1.4}{P_{4}} \\ \frac{T C}{310} \quad \frac{14^{4}P_{4}}{310} \quad S_{1}^{-1} + \frac{5}{14} \\ W_{2} := H_{3}^{-} - H_{1} \\ = -360^{4} M_{4} \quad S_{1}^{-} = 3040 \frac{c_{1}}{c_{1}} + (3.160 - 3040) \frac{a_{1}}{p_{1}} \quad \frac{(6.96 - 6.96)}{(7.14 - 6.96)} \frac{M_{4}}{P_{4}} \\ = -360^{4} M_{4} \quad S_{1}^{-} = 3040 \frac{c_{1}}{c_{1}} + (3.160 - 3040) \frac{a_{1}}{p_{1}} \quad \frac{(6.96 - 6.96)}{(7.14 - 6.96)} \frac{M_{4}}{P_{4}} \\ = -360^{4} M_{4} \quad S_{1}^{-} = 3040 \frac{c_{1}}{c_{1}} + (3.160 - 3040) \frac{a_{1}}{p_{1}} \quad \frac{(6.96 - 6.96)}{(7.14 - 6.96)} \frac{M_{4}}{P_{4}} \\ = -360^{4} M_{4} \quad S_{1}^{-} = 3040 \frac{c_{1}}{c_{1}} + (3.160 - 3040) \frac{a_{1}}{p_{1}} \quad \frac{(6.96 - 6.96)}{(7.14 - 6.96)} \frac{M_{4}}{P_{4}} \\ = -360^{4} M_{4} \quad S_{1}^{-} = 300^{4} C \quad S_{1}^{-} \\ M_{2}^{-} = 300^{6} C \quad S_{1}^{-} \\ M_{2}^{-} \\ M_{2}^{-} = 300^{6} C \quad S_{1}^{-} \\ M_{2}^{-} \\ M_{2}^{-} = 300^{6} C \quad S_{1}^{-} \\ M_{2}^{-} \\ M_$$

$$(2) 5 k_{1}p^{3} s^{*} = 0.4 \text{ M/A}_{a} 5_{3} = 7.11 \text{ M/K}_{y} \text{ M/K}_{a} \frac{1}{5_{3}} = 0.710 \text{ M/K}_{a} \frac{1}{(7.17 \text{ Gm})_{a}^{4}} (2500 - 270) \frac{1}{27} \frac{1}{7} \frac{1}{7} = 2710 \text{ M/K}_{a} \frac{1}{(7.17 \text{ Gm})_{a}^{4}} (2500 - 270) \frac{1}{27} \frac{1}{7} \frac{1}{7$$

Cyr 6 B Sto, 91 A=0.1 M/a 5=6.98 $H_{qi} = 418\frac{kT}{E_{1}} + (2680 - 418)\frac{kT}{E_{1}} + (2680 - 418)\frac{kT}{E$ H^L 418 414 T=99.6°C HV \$620 414 = 2540 KT T_i=99.6°C 5 1.30 KT/4 K 7.36 0/44 Hy=272047 Stop 4 5 k1/6,4 T°C Hkt/c, $S_{4} = 7.36\frac{47}{7.6} + (7.61-7.36)\frac{47}{7.4}\frac{47}{(100\frac{47}{100})}$ (0.4)2680 7.36 100 7.61 2780 150 = 7.46 kr $T_q = 100^{4} 50^{4} (0.4)$ $2^{2}01 = 120^{2}$ Sr.= 1.30 4. K Stop6 Tz 160°C H=423 KI $\eta_{\text{R}} = \frac{(300 + 140 + 108 - 6.00)}{(3 + 30 - 424)} + \frac{7}{9} = 0.247$ $\eta_{\text{R}} = \frac{(712 - 6)}{(3 + 30 - 424)} + \frac{7}{14} = 0.235$ $\eta_{\text{R}} = \frac{(712 - 6)}{(3 + 30 - 424)} + \frac{7}{14} = 0.235$ 47.7% faint 45.4% $\frac{500-99.6^{\circ}}{(500+273)k} = 0.518$ Nell ひきょう het workf